The Yersinia enterocolitica motility master regulatory operon, flhDC, is required for flagellin production, swimming motility, and swarming motility.
نویسندگان
چکیده
The ability to move over and colonize surface substrata has been linked to the formation of biofilms and to the virulence of some bacterial pathogens. Results from this study show that the gastrointestinal pathogen Yersinia enterocolitica can migrate over and colonize surfaces by swarming motility, a form of cooperative multicellular behavior. Immunoblot analysis and electron microscopy indicated that swarming motility is dependent on the same flagellum organelle that is required for swimming motility, which occurs in fluid environments. Furthermore, motility genes such as flgEF, flgMN, flhBA, and fliA, known to be required for the production of flagella, are essential for swarming motility. To begin to investigate how environmental signals are processed and integrated by Y. enterocolitica to stimulate the production of flagella and regulate these two forms of cell migration, the motility master regulatory operon, flhDC, was cloned. Mutations within flhDC completely abolished swimming motility, swarming motility, and flagellin production. DNA sequence analysis revealed that this locus is similar to motility master regulatory operons of other gram-negative bacteria. Genetic complementation and functional analysis of flhDC indicated that it is required for the production of flagella. When flhDC was expressed from an inducible ptac promoter, flagellin production was shown to be dependent on levels of flhDC expression. Phenotypically, induction of the ptac-flhDC fusion also corresponded to increased levels of both swimming and swarming motility.
منابع مشابه
flhDC, the flagellar master operon of Xenorhabdus nematophilus: requirement for motility, lipolysis, extracellular hemolysis, and full virulence in insects.
Xenorhabdus is a major insect pathogen symbiotically associated with nematodes of the family Steinernematidae. This motile bacterium displays swarming behavior on suitable media, but a spontaneous loss of motility is observed as part of a phenomenon designated phase variation which involves the loss of stationary-phase products active as antibiotics and potential virulence factors. To investiga...
متن کاملMotility is required to initiate host cell invasion by Yersinia enterocolitica.
Invasin-mediated invasion of host cells by the pathogen Yersinia enterocolitica was shown to be affected by flagellar-dependent motility. Motility appears to be required to ensure the bacterium migrates to and contacts the host cell. Nonmotile strains of Y. enterocolitica were less invasive than motile strains, but the reduction in invasion could be overcome by artificially bringing the bacteri...
متن کاملTwo separate regulatory systems participate in control of swarming motility of Serratia liquefaciens MG1.
Swarming motility of Serratia liquefaciens MG1 requires the expression of two genetic loci, flhDC and swrI. Here we demonstrate that the products of the flhDC operon (the flagellar master regulator) and the swrI gene (the extracellular signal molecule N-butanoyl-L-homoserine lactone) are global regulators which control two separate regulons.
متن کاملCRISPR-Cas gene-editing reveals RsmA and RsmC act through FlhDC to repress the SdhE flavinylation factor and control motility and prodigiosin production in Serratia
SdhE is required for the flavinylation and activation of succinate dehydrogenase and fumarate reductase (FRD). In addition, SdhE is conserved in proteobacteria (α, β and γ) and eukaryotes. Although the function of this recently characterized family of proteins has been determined, almost nothing is known about how their genes are regulated. Here, the RsmA (CsrA) and RsmC (HexY) post-transcripti...
متن کاملRepression of motility during fimbrial expression: identification of 14 mrpJ gene paralogues in Proteus mirabilis.
Proteus mirabilis alternates between motile and adherent forms. MrpJ, a transcriptional regulator previously reported to repress motility, is encoded at the 3' end of the mrp fimbrial operon in P. mirabilis. Sequencing of the P. mirabilis genome revealed 14 additional paralogues of mrpJ, 10 of which are associated with fimbrial operons. Twelve of these genes, when overexpressed, repressed motil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 181 9 شماره
صفحات -
تاریخ انتشار 1999